Начертательная геометрия - определение. Что такое Начертательная геометрия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Начертательная геометрия - определение

Фронталь; Профильная плоскость; Профильная плоскость проекции; Фронтальная плоскость проекции; Горизонтальная плоскость проекции
  • Рисунок 1
  • Рисунок 2
  • Рисунок 3
  • Рисунок 4
  • Рисунок 5
  • Рисунок 6
  • Рисунок 7
  • Рисунок 8
  • Рисунок 9
  • right
  • 200px
Найдено результатов: 220
Начертательная геометрия         

раздел геометрии, в котором пространственные фигуры изучаются при помощи построения их изображений на плоскости, в частности построения проекционных изображений, а также методы решения и исследования пространственных задач на плоскости.

Потребность в изображениях пространственных предметов на плоскости возникла в связи с решением различных практических вопросов (например, строительство зданий и других инженерных сооружений, развитие живописи и архитектуры, техники и т.п.). Особенно большое значение имеют чертежи, получаемые проектированием (проецированием) данной фигуры на плоскость (проекционные чертежи). Практика предъявляла к таким чертежам ряд требований; важнейшие из них: 1) наглядность изображения, т. е. свойство чертежа вызывать пространственное представление изображаемой фигуры; 2) "обратимость" чертежа, т. е. возможность точного определения изображенной фигуры по чертежу; 3) простота выполнения требуемых построений; 4) точность графических решений. В способах построения изображений применяются центральное и параллельное проектирование фигуры (натуры, объекта, оригинала) на плоскость проекций (см. Проекция). Наибольшей наглядностью обладают чертежи, полученные способом центрального проектирования, который соответствует геометрической схеме возникновения изображений на сетчатке человеческого глаза. Однако наиболее употребительными в Н. г. являются параллельные проекции, которые более просты в построении изображений и более удобны для определения по ним натуральной фигуры. Существуют различные виды параллельных проекций; самым распространённым является способ ортогональной проекции на две или три плоскости (комплексный чертёж). Сущность этого способа заключается в следующем. Выбирают две взаимно перпендикулярные плоскости проекций П1 и П2 в пространстве. Плоскость П1 располагают горизонтально; её называют горизонтально и плоскостью проекций, а плоскость П2 - фронтальной плоскостью проекций. Произвольную точку А пространства проектируют ортогонально на эти плоскости (рис. 1); получают горизонтальную проекцию A1 (AA1(плоскости П1) и фронтальную проекцию A2 (AA2 ⊥ плоскости П2). Три точки А, A1 и A2 лежат в одной (проектирующей) плоскости, перпендикулярной к линии p12 пересечения плоскостей проекций. Горизонтальную проекцию какой-либо фигуры получают, проектируя ортогонально все точки этой фигуры на плоскость П1, фронтальную проекцию - на плоскость П2. Часто бывает полезно добавить третью проекцию фигуры - на плоскость П3, перпендикулярную к плоскостям П1 и П2. Плоскость П3, а также и проекцию на неё называют профильной. Две проекции точки А (например, A1 и A2) вполне определяют третью проекцию (A3).

Чтобы получить чертёж, состоящий из трёх указанных проекций (комплексный чертёж), плоскости П1 и П3 совмещают с плоскостью П2 ("главной" плоскостью) путём вращения их вокруг линий p12 и p23 пересечения этих плоскостей с плоскостью П2 (рис. 2). Обычно на практике не указывается положение осей проекций p12 и p13, то есть положение плоскостей проекций определяется с точностью до параллельного переноса.

Комплексный чертёж обратим, так как по нему можно определить расстояние между любыми двумя точками натуральной фигуры. Действительно, отрезок AB (рис. 3) в натуре является гипотенузой прямоугольного треугольника ABB*, в котором AB* = A1B1, а В*В есть разность высот точек В и А, выражаемая на чертеже отрезком B2*B2. Отсюда можно получить простое построение натурального отрезка

(рис. 4); для этого нужно построить

Для увеличения наглядности комплексного чертежа на проекциях фигуры устанавливают "условия видимости": из двух точек А и В, проекции которых на какой-либо из плоскостей проекций совпадают, например A1 B1, видимой считается та, которая расположена ближе к зрителю; "невидимые" линии фигуры условно изображаются штриховыми линиями. Пример такого изображения пространственной фигуры в трёх проекциях, называется "вид спереди" (фронтальная проекция), "вид сверху" (горизонтальная проекция) и "вид слева" (профильная проекция), дан на рис. 5.

Комплексный чертёж (из двух или трёх ортогональных проекций) является наиболее распространённым видом технического чертежа. По нему легко определяются все необходимые размеры изображаемого предмета. Недостаток таких чертежей - их малая наглядность.

Для построения более наглядных обратимых изображений в Н. г. применяется другой способ, называемый аксонометрией.

При аксонометрии изображаемую фигуру относят к системе Oxyz осей координат в пространстве (см. Аналитическая геометрия). Эту систему координат называют натуральной. На рис.6 построена координатная ломаная OMxM1M для произвольной точки М. Длины координатных отрезков OMx, MxM1, M1M являются координатами х, у, z точки М. Если спроектировать натуральную систему осей Охуz на плоскость П', то получается так называемая аксонометрическая система осей О'х'у'z' (рис. 6). Проекция O'M'xM'1M' координатной ломаной состоит из отрезков O'M'x, M'xM'1, M'1M', длины которых x', y', z' в аксонометрической системе координат называется аксонометрическими координатами точки М. Отношения

выражают величины искажения координатных отрезков при проектировании; их называют показателями (коэффициентами) искажения. Если все три показателя искажения равны, то аксонометрию называют изометрией, если хотя бы два из них равны - диметрией, если же все показатели искажения неравны - триметрией.

Чтобы при помощи аксонометрического способа построить изображение точки М на плоскости П' в данной параллельной проекции, необходимо иметь: а) натуральные координаты этой точки М (х, у, z); б) аксонометрическую систему осей О'х'у'z' на плоскости проекций П'; в) показатели искажения u, v, w.

Тогда по формулам (*) находят аксонометрические координаты точки М'(х', у', z') и строят по ним точку M', являющуюся искомой проекцией точки М. Аксонометрическое изображение пространственной фигуры строят по точкам, определяющим последнюю. Аксонометрический чертёж обратим: если на аксонометрическом чертеже дана точка M' (х', у', z'), то можно по формулам (*) найти натуральные координаты х, у, z точки М.

Если задать произвольную аксонометрическую систему осей O'x'y'z' на плоскости проекций П' (не сводящуюся, однако, к одной прямой) и отношение показателей искажения u: v: w, то, согласно основной теореме аксонометрии (Польке теореме (См. Польке теорема)), существует такое положение натуральной системы осей координат относительно плоскости проекций П' и такое направление проектирования, при которых на плоскости П' реализуются ранее выбранная аксонометрическая система осей и отношений показателей искажения.

Для упрощения аксонометрического способа построения изображений пользуются "приведённой" аксонометрией, в которой аксонометрические координаты стремятся по возможности заменить натуральными без искажения вида чертежа. Так, например, на рис. 7 дана ортогональная изометрия объекта, изображенного на комплексном чертеже (рис. 5), с использованием натуральных координат вместо аксонометрических. При этом происходит изменение масштаба аксонометрического чертежа, но вид его сохраняется, т. е. чертёж изменяется подобно. Аксонометрические изображения предметов, не имеющих большого протяжения, обладают достаточной наглядностью. Этого нельзя сказать об изображениях крупных объектов, таких, как здания, плотины и др. сооружения. В этих случаях предпочтительнее применять изображения, выполненные в центральной проекции (перспективе (См. Перспектива)).

Чтобы перспективный чертёж был обратимым, на плоскости проекций П' строят центральную проекцию A' (перспективу) изображаемой точки А и перспективу A1' ортогональной проекции A1 точки на горизонтальную плоскость П1, называемую предметной (рис. 8). Плоскость проекций П' (картинную плоскость) выбирают преимущественно перпендикулярной к предметной. Точка A1 называется основанием точки А. В частности, S1 есть основание центра проекций ("глаза") S. Зная положение центра S относительно картинной плоскости П', можно по данным перспективе A' точки А и перспективе A'1 её основания найти положение натуральной точки А в пространстве. Для этого нужно провести SA1' и найти A1. Затем построить A1A ⊥ плоскости П1 и найти точку А пересечения прямых SA' и A1A. Большое значение при построении перспективных изображений имеют т. н. точки схода, являющиеся перспективными изображениями бесконечно удалённых точек пространства, и линия горизонта - перспективное изображение бесконечно удалённой прямой предметной плоскости П1.

На рис. 9 показано перспективное изображение комнаты. На нём видна главная точка y', которая является точкой схода для всех прямых, перпендикулярных (в натуре) картинной плоскости, и линия горизонта h. Точки схода др. параллельных прямых, лежащих в предметной плоскости, располагаются на линии горизонта h (например, D').

Используя координатный метод, можно выполнить построение перспективного изображения по способу центральной аксонометрии, аналогично описанной выше параллельной аксонометрии.

Наряду с построениями перспективных изображений на плоскости (линейная перспектива) на практике употребляются и др. виды центрально-проекционных изображений.

При построении чертежей, изображающих какую-либо часть земной поверхности, удобно пользоваться так называемыми проекциями с числовыми отметками. В этом случае на чертеже должно быть задано достаточное число точек поверхности (рис. 10). Проектируя ортогонально точки поверхности на плоскость проекций, записывают около проекции каждой точки её высотную отметку, т. е. число, выражающее высоту точки над плоскостью проекций в избранных единицах длины. Благодаря этому такой чертёж является обратимым. Для увеличения его наглядности и удобства пользования, проекции точек, имеющих одинаковую высоту, соединяют линией, которую называют линией уровня. Если изображена земная поверхность, то плоскость проекций считается горизонтальной; линии уровня называют в этом случае горизонталями. По форме и расположению горизонталей можно (с известной степенью точности) судить о рельефе изображенного участка земной поверхности, построить её сечение заданной на чертеже плоскостью σ (рис. 10), а также решать другие задачи. Такой способ изображения поверхности и саму поверхность, заданную системой горизонталей, называют топографическими.

Историческая справка. Первые попытки проекционных изображений можно встретить у древних народов ещё до нашей эры. Так, римский архитектор Витрувий в своём сочинении "Десять книг об архитектуре" (1 в. до н. э.) даёт понятие о плане (горизонтальной проекции) и фасаде (фронтальной проекции) сооружения. Итальянский архитектор и учёный Л. Альберти (15 в. н. э.) уже применяет "точки схода" и даёт важный для практики способ построения перспективы при помощи сетки. В "Трактате о живописи" (опубликован 1651) Леонардо да Винчи имеются многочисленные указания о практических применениях перспективных изображений, в частности о "наблюдательной" перспективе. Немецкий художник А. Дюрер в труде "Руководство к измерению..." (1525) предложил способ построения перспективы по горизонтальной и фронтальной проекциям объекта. Особенно полное изложение приёмов построения перспективы были даны итальянским учёным Г. Убальди (1600). Научные основы Н. г. были разработаны Ж. Дезаргом и главным образом Г. Монжем, который считается создателем научной Н. г.

В Древней Руси при возведении сооружений применялись изображения, в которых можно заметить элементы геометрического проектирования. Так, изображение города Пскова (1581) было выполнено с соблюдением некоторых законов перспективы. Чертежи изобретателя-самоучки И. П. Кулибина, зодчего Д. В. Ухтомского (См. Ухтомский) и др. являются геометрически правильными проекционными изображениями. Курс Н. г. был впервые введён в 1810 в Петербургском институте корпуса инженеров путей сообщения. Первым русским профессором Н. г. был Я. А. Севастьянов, написавший ряд сочинений по различным вопросам Н. г. Научному развитию Н. г. содействовали геометрические работы Е. С. Федорова (См. Фёдоров), который предложил метод изображения точек пространства на плоскости при помощи векторов. Метод Е. С. Федорова был успешно применен в многомерной Н. г., которая используется в физико-химическом анализе (школа Н. С. Курнакова). Советские геометры (А. К. Власов, Н. А. Глаголев, Н. Ф. Четверухин и др.) выполнили ряд исследований в области основной теоремы аксонометрии.

Лит.: Рынин Н. А., Материалы к истории начертательной геометрии, [Библиография, биографии, эпизоды, факты, хронология], Л., 1938; Монж Г., Начертательная геометрия, пер. с [франц.], М., 1947; Фёдоров Е. С., Новая начертательная геометрия, "Изв. АН", 1917, № 10; Глаголев Н. А., Начертательная геометрия, 3 изд., М., 1953; Вольберг О. А., Лекции по начертательной геометрии, М. - Л., 1947; Курс начертательной геометрии, под ред. Н. Ф. Четверухина, М., 1956; Вопросы современной начертательной геометрии. Сб. ст., под ред. Н. Ф. Четверухина, М. - Л., 1947; Глазунов Е. А. и Четверухин Н. Ф., Аксонометрия, М., 1953: Методы начертательной геометрии и её приложения. Сб. ст., под ред. Н. Ф. Четверухина, М., 1955; Добряков А. И., Курс начертательной геометрии, 3 изд., М. - Л., 1952.

Н. Ф. Четверухин.

Рис. 1 к ст. Начертательная геометрия.

Рис. 2 к ст. Начертательная геометрия.

Рис. 3 к ст. Начертательная геометрия.

Рис. 4 к ст. Начертательная геометрия.

Рис. 5 к ст. Начертательная геометрия.

Рис. 6 к ст. Начертательная геометрия.

Рис. 7 к ст. Начертательная геометрия.

Рис. 8 к ст. Начертательная геометрия.

Рис. 9 к ст. Начертательная геометрия.

Рис. 10 к ст. Начертательная геометрия.

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ         
раздел геометрии, в котором пространственные фигуры изучаются при помощи построения их изображений на плоскостях проекций. Некоторые идеи начертательной геометрии были разработаны в 16-17 вв., но в самостоятельную науку начертательная геометрия оформилась в кон. 18 в. в связи с возросшими потребностями инженерной практики.
НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ         
раздел геометрии, научные основы которого были разработаны французским математиком и физиком Г.Монжем (1746-1818) для решения задач, связанных с определением размеров, форм и положения в пространстве линий, поверхностей, тел и их пересечений, при помощи построения их изображений на плоскости. Свойства геометрических фигур исследуются по их ортогональным проекциям, как правило, на три взаимно перпендикулярные плоскости, а геометрические построения в пространстве заменяются более доступными геометрическими построениями на соответствующих проекциях. Построение проекций требует знания основ планиметрии и стереометрии, а также владения искусством чертежника. Начертательная геометрия широко применяется в архитектуре и инженерном деле.
Ортогональная проекция изображает пространственный объект на опорной плоскости, с помощью перпендикуляров, опущенных на эту плоскость из каждой точки объекта.
На рис. 1 горизонтальная плоскость H и вертикальная (фронтальная) плоскость V делят пространство на четыре квадранта I, II, III и IV. Прямоугольный параллелепипед S, расположенный в квадранте I, порождает фронтальную проекцию SV на плоскость V и горизонтальную проекцию SH на плоскость H. Если теперь выбрать какую-нибудь дополнительную плоскость, перпендикулярную к V и Н, например, плоскость P (называемую профильной), то можно получить дополнительную (профильную) проекцию SP. Если затем отогнуть плоскость H вниз, а плоскость P вправо, как показано стрелками, пока они не совместятся с фронтальной плоскостью, то на комплексном чертеже (эпюре) мы получим виды SV, SH и SP, изображенные на рис. 2. Они известны под названиями видов спереди, сверху и сбоку. Обычно в начертательной геометрии используют именно такие проекции, но иногда при изучении трудно доступных или имеющих сложную конфигурацию частей фигуры проводят вспомогательные плоскости. Для тренированного глаза рис. 2 дает полное и точное описание объекта, изображенного на рис. 1.
Начертательная геометрия         
Начерта́тельная геоме́трия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов.
Жёсткость (геометрия)         
Жёсткость — свойство подмногообразия M в евклидовом пространстве (или, более обще, в пространстве постоянной кривизны), заключающееся в том, что любая его изометрическая вариация (бесконечно малое изгибание) является тривиальной, то есть соответствующее её поле скоростей на M индуцируется полем Киллинга на M. Вопрос о жёсткости подмногообразий — по существу вопрос о единственности решения системы дифференциальных уравнений, являющихся линеаризацией системы уравнений для изометричных изгибаний подмногообразия.
Вычислительная геометрия         
Вычислительная геометрия — раздел информатики, в котором рассматриваются алгоритмы для решения геометрических задач.
Гиперболическая геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Лобачевского геометрия         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость

геометрическая теория, основанная на тех же основных посылках, что и обычная Евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Л. г. вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Л. г. имеет вполне реальный смысл (о чём см. ниже). Л. г. была создана и развита Н. И. Лобачевским (См. Лобачевский), который впервые сообщил о ней в 1826. Л. г. называется неевклидовой геометрией, хотя обычно термину "неевклидова геометрия" придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Л. г. и также основанные на изменении основных посылок евклидовой геометрии. Л. г. называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана) (см. Неевклидовы геометрии, Римана геометрия).

Л. г. представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Л. г. на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем "плоскостью". Точкой "плоскости" будет точка внутри круга. "Прямой" будем называть любую хорду (например, а, b, b', MN) (с исключенными концами, т. к. окружность круга исключена из "плоскости"). "Движением" назовем любое преобразование круга самого в себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Л. г. Иными словами, всякое утверждение Л. г. на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. "прямой"), проходит сколько угодно не пересекающих её хорд ("прямых") (например, b, b'). Аналогично, Л. г. в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах ("прямые" - хорды, "плоскости" - плоские сечения внутренности шара, "равные" фигуры - те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Л. г. имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Возникновение геометрии Лобачевского. Источником Л. г. послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в "Началах" Евклида (См. Начала Евклида)). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.

Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 - начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 - начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Л. г. подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.

Вопрос о V постулате Евклида, занимавший геометров более двух тысячелетий, был решен Лобачевским. Это решение сводится к тому, что постулат не может быть доказан на основе др. посылок евклидовой геометрии и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий. Лобачевский сделал об этом сообщение в 1826, а в 1829-30 напечатал работу "О началах геометрии" с изложением своей теории. В 1832 была опубликована работа венгерского математика Я. Больяй аналогичного содержания. Как выяснилось впоследствии, немецкий математик К. Ф. Гаусс также пришёл к мысли о возможности существования непротиворечивой неевклидовой геометрии, но скрывал её, опасаясь быть непонятым. Хотя Л. г. развивалась как умозрительная теория и сам Лобачевский называл её "воображаемой геометрией", тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решен вопрос о её реальном смысле, логической непротиворечивости.

Интерпретации (модели) геометрии Лобачевского. Л. г. изучает свойства "плоскости Лобачевского" (в планиметрии) и "пространства Лобачевского" (в стереометрии). Плоскость Лобачевского - это плоскость (множество точек), в которой определены прямые линии, а также движения фигур (вместе с тем - расстояния, углы и пр.), подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется указанной выше аксиомой Лобачевского. Сходным образом определяется пространство Лобачевского. Задача выяснения реального смысла Л. г. состояла в нахождении моделей плоскости и пространства Лобачевского, т. е. в нахождении таких объектов, в которых реализовались бы соответствующим образом истолкованные положения планиметрии и стереометрии Л. г. (об интерпретации вообще см. Геометрия, раздел Истолкования геометрии). Итальянский математик Э. Бельтрами в 1868 заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет Псевдосфера (рис. 2). Если точкам и прямым на конечном куске плоскости Лобачевского сопоставлять точки и кратчайшие линии (геодезические) на псевдосфере и движению в плоскости Лобачевского сопоставлять перемещение фигуры по псевдосфере с изгибанием, т. е. деформацией, сохраняющей длины, то всякой теореме Л. г. будет отвечать факт, имеющий место на псевдосфере. Т. о., Л. г. получает простой реальный смысл. При этом длины, углы, площади понимаются в смысле естественного измерения их на псевдосфере. Однако здесь даётся интерпретация только геометрии на куске плоскости Лобачевского, а не на всей плоскости и тем более не в пространстве (в 1901 Д. Гильберт доказал даже, что вообще в евклидовом пространстве не может существовать регулярной поверхности, геометрия на которой совпадает с геометрией всей плоскости Лобачевского).

В 1871 Ф. Клейн указал ту модель как всей плоскости, так и пространства Лобачевского, которая была описана выше и в которой плоскостью служит внутренность круга, а пространством - внутренность шара. Между прочим, в этой модели расстояние между точкам (рис. 1) определяется как ; угол - ещё сложнее.

Позже А. Пуанкаре в связи с задачами теории функций комплексного переменного дал другую модель. За плоскость Лобачевского принимается внутренность круга (рис. 3), прямыми считаются дуги окружностей, перпендикулярных окружности данного круга, и его диаметры, движениями - преобразования, получаемые комбинациями инверсий (См. Инверсия) относительно окружностей, дуги которых служат прямыми. Модель Пуанкаре замечательна тем, что в ней углы изображаются обычными углами. Исходя из таких соображений, можно строить модель Л. г. в пространстве.

Коротко модели Клейна и Пуанкаре можно определить так. В обоих случаях плоскостью Лобачевского может служить внутренность круга (пространством - внутренность шара), и Л. г. есть учение о тех свойствах фигур внутри круга (шара), которые в случае модели Клейна не изменяются при проективных, а в случае модели Пуанкаре - при конформных преобразованиях круга (шара) самого в себя (проективные преобразования есть те, которые переводят прямые в прямые, конформные - те, которые сохраняют углы).

Возможно чисто аналитическое определение модели Л. г. Например, точки плоскости можно определять как пары чисел х, у, прямые можно задавать уравнениями, движения - формулами, сопоставляющими точкам (х, у) новые точки (х', y'). Это будет абстрактно определённая аналитическая геометрия на плоскости Лобачевского, аналогично аналитической геометрии на плоскости Евклида. Т. к. Лобачевский дал основы своей аналитической геометрии, то тем самым он уже фактически наметил такую модель, хотя полное её построение выяснилось уже после того, как на основе работ Клейна и других выявилось само понятие о модели. Другое аналитическое определение Л. г. состоит в том, что Л. г. определяется как геометрия риманова пространства постоянной отрицательной кривизны (см. Римановы геометрии (См. Риманова геометрия)). Это определение было фактически дано ещё в 1854 Б. Риманом и включало модель Л. г. как геометрии на поверхностях постоянной кривизны. Однако Риман не связал прямо своих построений с Л. г., а его доклад, в котором он о них сообщил, не был понят и был опубликован лишь после его смерти (в 1868).

Содержание геометрии Лобачевского. Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, т. к. именно здесь начинается отличие Л. г. от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют т. н. абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились др. отделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Приведём несколько фактов Л. г., отличающих её от геометрии Евклида и установленных самим Лобачевским.

1) В Л. г. не существует подобных, но неравных треугольников; треугольники равны, если их углы равны. Поэтому существует абсолютная единица длины, т. е. отрезок, выделенный по своим свойствам, подобно тому как прямой угол выделен своими свойствами. Таким отрезком может служить, например, сторона правильного треугольника с данной суммой углов.

2) Сумма углов всякого треугольника меньше π и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность π - (α + β + γ), где α, β, γ - углы треугольника, пропорциональна его площади.

3) Через точку О, не лежащую на данной прямой а, проходит бесконечно много прямых, не пересекающих а и находящихся с ней в одной плоскости; среди них есть две крайние b, b', которые и называются параллельными прямой а в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) а общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек) (рис. 1,3). Угол ее между прямой b (или b') и перпендикуляром из О на а - т. н. угол параллельности - по мере удаления точки О от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель b с одной стороны (а b' с противоположной) асимптотически приближается к а, а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

4) Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

5) Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой, или гиперциклом.

6) Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью, или орициклом.

7) Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

8) Длина окружности не пропорциональна радиусу, а растет быстрее.

9) Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы Л. г. переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле "предельный" случай Л. г.

Л. г. продолжает разрабатываться многими геометрами; в ней изучаются: решение задач на построение, многогранники, правильные системы фигур, общая теория кривых и поверхностей и т. п. Ряд геометров развивали также механику в пространстве Лобачевского. Эти исследования не нашли непосредственных применений в механике, но дали начало плодотворным геометрическим идеям. В целом Л. г. является обширной областью исследования, подобно геометрии Евклида.

Приложения геометрии Лобачевского. Сам Лобачевский применил свою геометрию к вычислению определённых интегралов. В теории функций комплексного переменного Л. г. помогла построить теорию автоморфных функций (См. Автоморфная функция). Связь с Л. г. была здесь отправным пунктом исследований Пуанкаре, который писал, что "неевклидова геометрия есть ключ к решению всей задачи". Л. г. находит применение также в теории чисел, в её геометрических методах, объединённых под названием "геометрия чисел" (см. Чисел теория). Была установлена тесная связь Л. г. с кинематикой специальной (частной) теории относительности (см. Относительности теория). Эта связь основана на том, что равенство, выражающее закон распространения света

x2 + y2 + z2 = c2t2

при делении на t2, т. е. для скорости света, даёт

vx2 + vy2 + vz2 = c2

- уравнение сферы в пространстве с координатами vx, vy, vz - составляющими скорости по осям х, у, z (в "пространстве скоростей"). Лоренца преобразования сохраняют эту сферу и, т. к. они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с, т. е. для скоростей, меньших скорости света, имеет место Л. г.

Замечательное приложение Л. г. нашла в общей теории относительности (см. Тяготение). Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается, что при определённых условиях пространство имеет Л. г. Т. о., предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.

Лит.: Лобачевский Н. И., Сочинения по геометрии, М. - Л., 1946-49 (Полн. собр. соч., т. 1-3); Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; Александров П. С., Что такое неевклидова геометрия, М., 1950; Делоне Б. Н., Элементарное доказательство непротиворечивости планиметрии Лобачевского, М., 1956; Широков П. А., Краткий очерк основ геометрии Лобачевского, М., 1955; Каган В. Ф., Лобачевский и его геометрия. Общедоступные очерки, М., 1955; его же, Геометрия Лобачевского и ее предистория, М. - Л., 1949 (Основания геометрии, ч. 1); Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Погорелов А. В., Основания геометрии, 3 изд., М., 1968; Розенфельд Б. А., Неевклидовы пространства, М., 1969; Нут Ю. Ю., Геометрия Лобачевского в аналитическом изложении, М., 1961; Андриевская М. Г., Аналитическая геометрия в пространстве Лобачевского, К., 1963.

А. Д. Александров.

Рис. 1 к ст. Лобачевского геометрия.

Рис. 2 к ст. Лобачевского геометрия.

Рис. 3 к ст. Лобачевского геометрия.

ЛОБАЧЕВСКОГО ГЕОМЕТРИЯ         
  • (1) [[евклидова геометрия]];<br>(2) [[геометрия Римана]];<br>(3) геометрия Лобачевского
  • <center>Угол параллельности</center>
  • Заполнение пространства Лобачевского правильными прямоугольными додекаэдрами ({5,3,4})
  • Через точку ''Р'' проходит бесконечно много «прямых», не пересекающих «прямой» ''а''
  • [[Конформно-евклидова модель]]
  • Псевдосфера
  • Замощение плоскости Лобачевского правильными треугольниками ({3;7})
АЛЬТЕРНАТИВНАЯ ФОРМА ГЕОМЕТРИИ
Гиперболическая геометрия; Лобачевского геометрия; Плоскость Лобачевского; Гиперболическая плоскость
построенная в 1826 Н. И. Лобачевским геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы (постулата) о параллельных. Евклидова аксиома гласит: в плоскости через точку, не лежащую на данной прямой, можно провести одну, и только одну, прямую, параллельную данной, т. е. ее не пересекающую. В геометрии Лобачевского эта аксиома заменена следующей: в плоскости через точку, не лежащую на данной прямой, можно провести более одной прямой, не пересекающей данной. В геометрии Лобачевского многие теоремы отличны от аналогичных теорем евклидовой геометрии; напр., сумма углов треугольника меньше двух прямых, два подобных треугольника всегда равны между собой. Несмотря на внешнюю парадоксальность этих выводов, геометрия Лобачевского оказалась логически совершенно равноправной с евклидовой. Открытие неевклидовой геометрии Лобачевского внесло коренные изменения в представления о природе пространства.

Википедия

Начертательная геометрия

Начерта́тельная геоме́трия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов.

Практически начертательная геометрия ограничивается исследованием объектов трёхмерного евклидова пространства. Исходные данные должны быть представлены в виде двух независимых проекций. В большинстве задач и алгоритмов используются две ортогональные проекции на взаимно перпендикулярные плоскости.

В настоящее время дисциплина не имеет практической ценности в силу развития вычислительной техники и аппарата линейной алгебры, но, вероятно, незаменима как составляющая общего инженерного образования на машиностроительных и строительных специальностях.

Начерта́тельная геоме́трия — наука, изучающая пространственные фигуры при помощи их проецирования (проложения) перпендикулярами на некоторые три плоскости, которые рассматриваются затем совмещёнными одна с другой.

При обыкновенном способе изображения предметов линии, распространяющиеся вдаль от глаза наблюдателя, хотя и изображаются, соответственно с тем, какими они нам представляются, сокращёнными, но это сокращение определяется рисовальщиком обыкновенно на глаз, а фотографией оно хотя в известных случаях и достаточно точно может быть передано, но отношение, в каком потерпели сокращения разные линии изображаемого предмета, остаётся трудно определимым; вдобавок, во многих случаях и фотография ведёт к перспективным ошибкам. Всякий мастер, будет ли то плотник, слесарь, токарь, каменотёс и т. д., может выполнить заказанный предмет согласно желанию заказчика только в том случае, если ему будет дан совершенно такой же предмет на образец, либо его модель, либо конструкторский чертёж, по которому легко и точно определялись бы размеры всех начерченных линий, хотя бы и таких, которые удаляются в глубь картины и потому изображаются сокращёнными. Начертательная геометрия учит изготовлению таких чертежей, в которых предмет изображается почти таким, каким мы его видим, и притом так, что по начерченным линиям можно в точности определить размеры и истинный вид изображаемого предмета.